
2. renderResponse()

Select page
display variant

Is a
#type ‘page’

render array?

hook_page_attachments()

hook_page_(top|bottom)()

Example: BlockPageVariant selected.

render()
main content

Yes

No

Build page display
variant The result of a built page display variant is a #type ‘page’ render array.

hook_page_attachments() operates on #type ‘page’.

The main content must already be rendered, because it might set the
page title.

render()
entire HTML document

Only accepts render arrays of #type ‘page’!Wrap in #type ‘html’

Example: response for the path /admin.

Renders the 3 parts of the HTML body: page_top, page, page_bottom
(where page corresponds to #type ‘page’ and hence page.html.twig).
Then renders the entire HTML (i.e. the html.html.twig template).

render()
main content

Add InsertCommand

new AjaxResponse()

Get dialog options from
Request

Calculate title if not
provided by main content

Calculate title if not
provided by main content

render()
main content

Add OpenDialogCmd

new AjaxResponse()

The flow for all four formats supported in core in their respect is
displayed next, but the explanations below only apply to the
HtmlController!
If an unsupported format was negotiated, a 406 response is generated.

new HtmlResponse()

5. Calling the Controller

6. The kernel.view Event

7. The kernel.response Event

DialogRenderer ModalRendererHtmlRenderer AjaxRenderer

No

Response

Initialize the corresponding
main content renderer

Is render array?

Yes

Main content
renderer for request

format exists?

Yes

Call ::renderResponse()

Set Response on Event

Generate 406
Response

No

Controller returns either:

No

1. prepare() helper

Calculate title if not
provided by main content

render()
main content

Add OpenModalDialogCmd

new AjaxResponse()

format = ‘ajax’format = ‘modal’

MainContentViewSubscriber

Response

Response

Response

main content renderers

format = ‘html’ format = ‘dialog’

\D\s\C\SystemController::systemAdminMenuBlockPage is called, it
returns a render array with no #type.

MainContentViewSubscriber only handles render arrays!
If it’s anything else (e.g. an object), then it’s up to another VIEW event
subscriber to turn it into a Response.

MainContentViewSubscriber looks at the available main content
renderer services. These are tagged with render.main_content_renderer.
Contributed modules can additional renderers.

Example: GET /admin.

HTTP request

1. The kernel.request event Determine
route &

controller

HTTP response

Negotiate
format

Request handling and rendering flow

Example: /admin path → system.admin route
That route has the following attributes:
 _content: '\D\s\C\SystemController::systemAdminMenuBlockPage'
 _title: ‘Administration’

Explanation

KernelEvents::REQUEST

2. Resolve the Controller

3. The kernel.controller event

See http://symfony.com/doc/2.7/components/
http_kernel/introduction.html

 for more details — this shows the same steps.

4. Getting the Controller Arguments

Yes

index.php

3. Call Response::prepare()

2. Call HttpKernel::handle()

1. Create Request from globals

4. Call Response::send()

5. Call HttpKernel::terminate()

HttpKernel::handle()

Symfony (HttpKernel) Drupal (Controller, MainContentViewSubscriber, main content renderers)Event handling

KernelEvents::CONTROLLER

Some parts are greyed out because they’re of lesser importance:
they do happen, but are not crucial for understanding the flow.

Typically, the format will be html, but it could also be
ajax, dialog, modal, json, hal_json, and more.
See: Symfony’s Request::setFormat().

_controller is set to '\D\s\C\SystemController::systemAdminMenuBlockPage'

KernelEvents::VIEW

SELECT_PAGE_DISPLAY_VARIANT

KernelEvents::TERMINATE

Response

Is Response?

render
array

object with
associated
kernel.view

event
subscriber

Colored overlaid arrows: showing the flow of the
different types of Controller return values.

Typical flow

Note that HtmlResponse (as well as AjaxResponse) at this point still
contains attachments: asset libraries, headers … but also placeholders.

…Return placeholders
unchanged

SingleFlush (core) BigPipe (contrib) …

Transform placeholders to
BigPipe placeholders

placeholder strategies (HTML responses only)

Is HTML response
and has placeholders

attached?

::processPlaceholders()

Set final placeholders on
HtmlResponse

Yes

HtmlRes’PlaceholderStrat’Sub

Placeholder strategies can transform standard Drupal placeholders
(designed for non-deferred rendering) into other placeholders, which
may be replaced with the final markup using any way possible.
For example: BigPipe, ESI …

ChainedPlaceholderStrategy looks at the available placeholder
strategies. These are tagged with placeholder_strategy.
Contributed modules can additional renderers.

BigPipe is a contrib module during 8.0.x, will likely be in 8.1.x core.
See https://www.drupal.org/project/big_pipe

KernelEvents::RESPONSE

No

HtmlRes’AttachmentsProcessor

Render placeholders

Update HTML to load final assets, set
attached headers on response …

Process all other HtmlResponse attachments: asset libraries, HTML
<head> elements, headers …

BigPipe placeholders rendered at the end of::send(), after most is sent.

http://symfony.com/doc/2.7/components/http_kernel/introduction.html
http://symfony.com/doc/2.7/components/http_kernel/introduction.html
https://www.drupal.org/project/big_pipe
https://www.drupal.org/project/big_pipe
https://www.drupal.org/project/big_pipe

