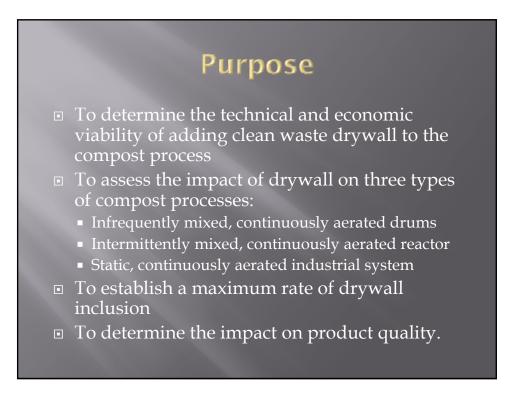
12/21/2010


ASSESSING THE USAGE OF CLEAN DRYWALL IN THE COMPOST PROCESS

Paul Arnold P.Eng., MBA, PhD Acadia University

RRFB Research & Development Findings Symposium

December 2, 2010

Project sponsor: RRFB Nova Scotia

Drywall

- Wallboard, gyproc, gypsum board or sheet rock
- Plaster core primarily made of gypsum, or calcium sulphate dihydroxide (CaSO₄·2H₂O)
- Drywall a sandwich consisting of two outer sheets of heavy paper and the core of plaster
- Consists of 85–90% gypsum (inorganic) and 7– 15% paper (organic) (Dillon Consulting Ltd., 2006)
- Unlike limestone (CaCO₃) does not change the soil's acidity levels
- Can be reformed into new drywall
- Natural and synthetic sources.

Drywall Waste

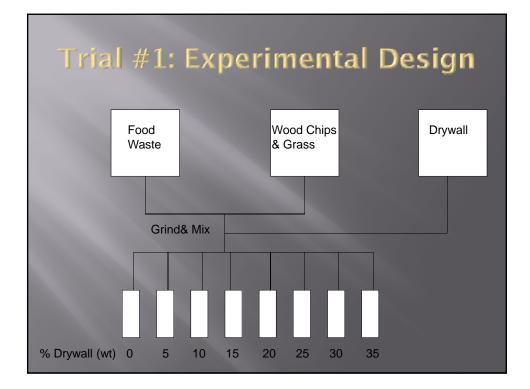
- Sources: construction sites (clean) & demolition sites (contaminanted?)
- USEPA estimates that drywall constitutes 5– 15% of the C&D waste stream
- One pound of drywall waste is produced from each 1 ft² of covered wall (WasteCap Wisconsin Inc., 2005)
- Each new house produces approximately one ton of drywall waste Wolkovski (2003).

Drywall Waste (con't)

- NS produces 15,000–17,700 tonnes/year
- Canada produces 496,000–585,000 tonnes/year
- 15% of the C&D waste from new construction (Halifax C&D Recycling Ltd.)
- 2,500 tonnes of clean drywall is disposed of annually in Nova Scotia and 81,000 tonnes in Canada.

12/21/2010

C O	Constituent (Ibs/ton)	Ground Drywall	Agricultural Gypsum
N	Calcium	444-456	534-570
S	Sulphur	320-328	402-424
T	Phosphorous	0.4-0.6	0.4
	Potassium	1	0.1-0.2
Т	Magnesium	11	3-3.8
U	Iron	4.24-4.82	0.94-1.61
E	Manganese	0.2-0.3	0.07-0.1
N	Boron	0.03-0.04	0.17-0.19
Т	Sodium	1.8	1.8-2.0
S	Un	iversity of Georgia,	2002

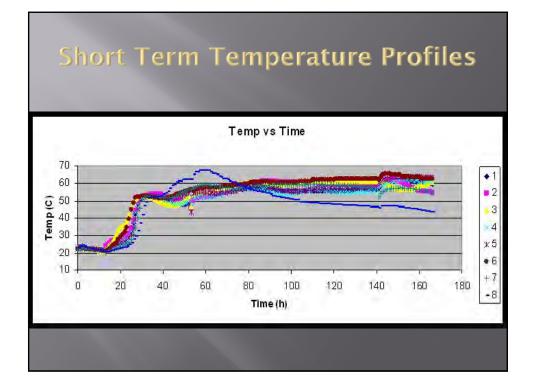

H			
	Metal	Drywall (mg/kg)	CCME Category A Compost (mg/kg)
	Lead	< 4	150
	Cadmium	<0.4	3
	Nickel	<1 – 12.2	62
e	Chromium	1.1-1.5	210
t a	Mercury	0.015 – 0.024	0.8
I		Thoresen, 2001	
S			

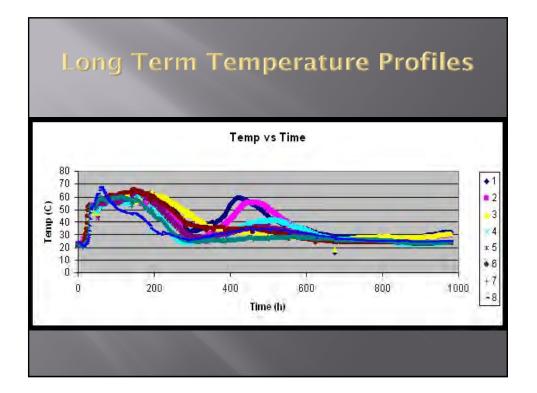
Past Work: Wisconsin Department of Natural Resources

- Study on drywall as substitute for agricultural gypsum
- Gypsum serves as a fertilizer and a soil amendment (calcium and sulphur are essential plant nutrients)
- Will not artificially increase the alkalinity
- Application based upon sulphur content of soil and the sulphur needs of the crop
- Crushed wallboard application rates of 2-5 ton/acre.

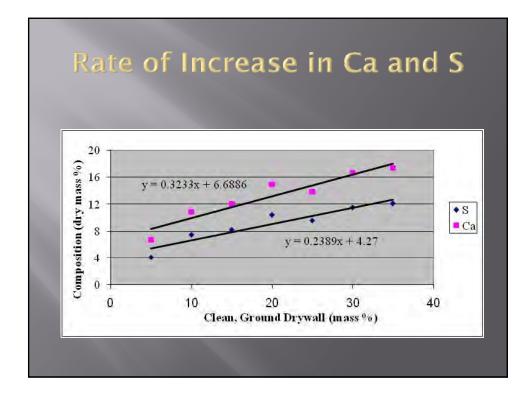
Past Work: Clean Washington Center and E&A Environmental Consultants, Inc. (1997)

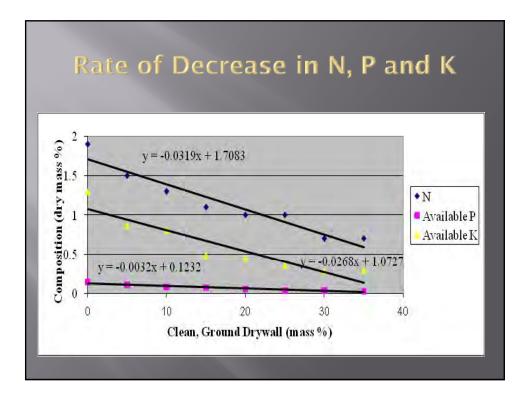
- Four outdoor, aerated, static 21-yd³ bins
- Four different mixtures (12.5-37.5% vol) of biosolids, gypsum and yard waste composted over eight weeks
- No substantial impact on compost process, expected increase in calcium
- Recommended use of drywall as a bulking agent, a means to balance (C:N) ratio and absorb excess water.





12/21/2010


	Organ	ic Matter
Bioreactor	% Drywall	Organic Matter Content %
#1	0	89.30
#2	5	82.10
#3	10	67.24
#4	15	59.92
#5	20	58.82
#6	25	49.7
#7	30	46
#8	35	43



A	ssessm	ent A	fter 4) C)ays
Sample	Moisture (%)	CO2	NH ₃	Matu	rity Index
Bioreactor 1	48.54	4	5	4	Immature
Bioreactor 2	47.31	4	5		Immature
Bioreactor 3	49.12		5		Immature
Bioreactor 4	52.27	6	5		Mature
Bioreactor 5	52.84	7	5		Very Mature
Bioreactor 6	52.39	7	5		Very Mature
Bioreactor 7	46.24	7	5		Very Mature
Bioreactor 8	50.01	7	5		Very Mature

				M	eta	als							
Reactor	S (%)	Ca (%)	As	Cd	Cr	Со	mg/ Cu	′kg Pb	Hg	Mb	Ni	Se	Zn
1	0.2		<1	0.3	7	<1	23	4	<0.05	1.2	8	<0.5	138
2	4.1	6.7	<1	0.3	8	2	20	7	<0.05	1.5	9	<0.5	206
3	7.5	10.8	<1	0.2		3	20	9	<0.05	1.2	8	<0.5	134
4	8.2	12.0	<1	0.3	7	2	18	9	<0.05	1.1	6	<0.5	150
5	10.4	14.9	<1	0.3	5	2	12	5	<0.05	0.7	5	0.6	103
6	9.4	13.6	<1	0.2	7	2	11	10	<0.05	0.7	5	<0.5	81
7	11.5	16.6	1	0.2	7	4	16	25	<0.05	0.7	7	<0.5	116
8 Class A	12.1	17.3	<1	0.2	8	3	15	17	<0.05	0.8	7	<0.5	107
Class A Limit			13	3	210	34	100	150	0.8	5	62	2	500

Pro	oce	ess	Ar	ıalı	ysi	5		
A COLORADO				Ti	me (h)			
	0	24.3	53	82	100	124	146	215
Reactor Temperature (°C)	27	40.5	57	30	25	25	24	
Compost pH	6	6.5	7.1	6.7	6.7	6.7	6.8	
Moisture Content (%)	45	46	38	44	42	41	41	Emptied Reactor
Condensate Collected (mL)		328	926	432				reactor
Condensate pH		7.5	7.6	8				

	Fee	edstock	Pı	roduct	
	Mass	Volume	Mass	Volume	1 900 2 Ca
	(kg)	(L)	(kg)	(L)	
Organics	16.1	39.52			A AND A REAL
Drywall	8.7	17.5			
Total	24.8	57.02	21.27	47.84	
	14.2	% Mass Re	duction		1 Mars
	16.1%	6 Volume R	eduction	and the second second	


Recipe

9 tonnes drywall + 18 tonnes SS organics
Static pile, continuously aerated

Prod	ce	ss	Aı	nal	lys	is			
					Day				
	1	2	3	4	5	6	9	10	12
Condensat pH With Drywall	5.4	5.3	5.2	5.3	5.5	5.7			5.8
Condensate pH Without Drywall	4.9	4.8	5.1	5.4	5.4				5.1
Temperature with Drywall	40	42	49	49	51	48	54	53	
Temperature without Drywall	37	49	55	57	60	57	57	38	47

roduct Ana	lysis	
	With Drywall	Without Drywall
Empty Container (kg)	8780	9030
Full Container (kg)	35080	36110
Mass Organics/Drywall	26300	27080
Total Mass After Processing	31560	29170
Weight Organics/Drywall Lost	3520	6940
% lost	13%	26%
Processing Time (days)	12	12

Conclusions

- Clean drywall can be added to the compost process (<30% by mass) without inhibition providing an alternative that is more responsible than C&D disposal or landfilling
- The amount of drywall included in the compost process is less dependent on microbial suppression and more dependent upon the facility's ability to maintain aerobic conditions throughout the pile.

Conclusions (con't)

- □ Obvious increase in Ca & S, decrease in C
- Product application rates based upon S and Ca tolerances of receiving environment
- Metals of little concern in natural gypsum; *may be* of concern with synthetic gypsum .

Recommendations

- Notwithstanding the detection of unacceptable contaminants or process constraints, clean drywall can be added to compost processes up to 30% by mass
- Synthetic gypsum products should be tested at source for known possible contaminants prior to inclusion in a compost process
- Test results should be submitted to provincial environment departments to develop a database and establish "average" contaminant values
- On-going research should be monitored to determine future policy.

