High Performance Tire Derived Aggregate (TDA) Use in Nova Scotia Projects

DIVERT NOVA SCOTIA - SUSTAINABLE PROCUREMENT SUMMIT - SEPTEMBER 21, 2018

DARTMOUTH, NOVA SCOTIA

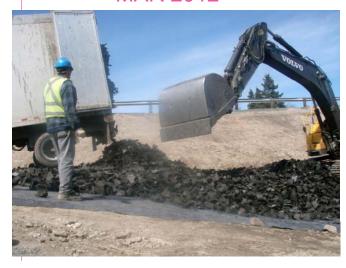
JIM SIMMONS. P.ENG FEC - REPRESENTING HALIFAX C&D RECYCLING LTD

Sustainable Procurement Summit is focused on two objectives:

- 1. Increase the procurement of local recycled products/services in both provincial and municipal government.
- 2. Raise awareness of local companies that supply recycled products/services in NS and demonstrate how the specifications of the recycled products could meet governments needs.
- ► PAST TDA PROJECT PERFORMANCE
- What can you show us? Where have these materials been used? What are the outcomes? Why should we be thinking of TDA?
- (ENGINEERING) RESEARCH AND DEVELOPMENT
- What are the (technical) barriers? What's been done to advance the utility of TDA in civil engineering projects? How applicable is the research that has been done? Why does this work matter here?

Ragged Lake HRM Transit Connector Ramp Project 2012

EVERYONE SAID "YES"


Numerous Stakeholders:

- HRM (facilitator/builder)
- NSTIR (Owner)
- Genivar (Prime Consultant)
- Stantec Consulting (TDA Consultant)
- Halifax C&D Recycling Ltd (materials supplier)
- Brycon (Civil Contractor)

WHY?

- HCD knew it would be a success
- HRM commitment to sustainability and their engineering understanding of the TDA product
- NSTIR curiosity and trust of HRM to look after details
- Significant cost benefits
- It was the right project

CONSTRUCTION START MAR 2012

Ragged Lake HRM Transit Connector Ramp Project 2012

VERY EFFICIENT TRANSPORT

TDA delivered by live floor trailers end dumped onto working area

VERY EFFICIENT PLACEMENT

1 cubic meter of TDA is 0.85 tonnes versus 2.02 tonnes for borrow fill – so it fills a hole quickly!

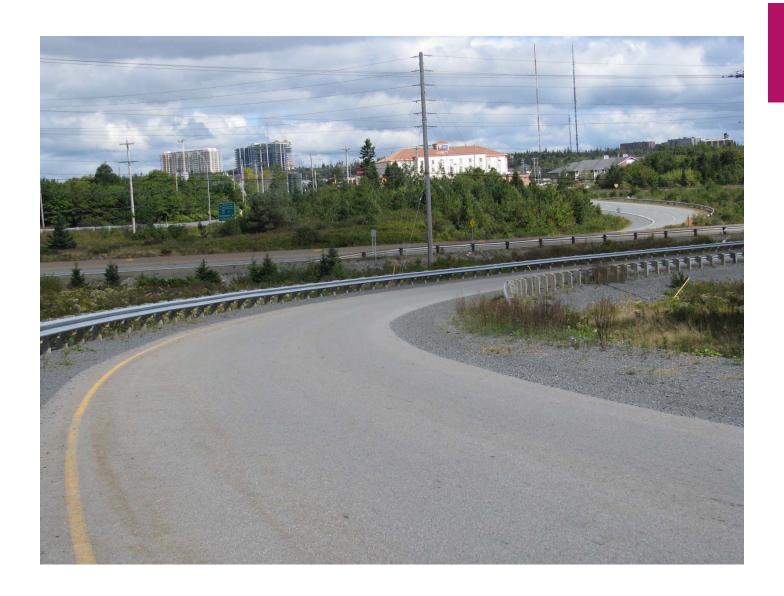
CONVENTIONAL CONSTRUCTION METHODS

All typical equipment - rollers, excavators, dozers, and much less fuel used because it is light - so less work to move

Ragged Lake HRM Transit Connector Ramp Project 2012

Material Wrapped

Type 2 Fills (i.e. greater then 1 meter) requires a geotextile fabric to prevent fine materials from entering the fill mass


Large Project

Approximately 800,000 tires used almost one years worth of scrap material

> \$100,000 Saved

Undisputed benefits of the project is that it was less costly to build. Other benefits accrued as well.

ENGINEERING RESEARCH AND DEVELOPMENT SPONSORED By Halifax C&D Recycling Ltd

Dalhousie University - Dr. Hany El Naggar

Geotechnical Engineering Professor in the Centre for Sustainable Infrastructure

Halifax C&D Recycling QA/QC

TDA Type A and B materials are manufactured to ASTM D6270(08)- R12

TDA Type A - Chip

Manufactured from passenger car tires and used in drainage, insulation, vibration attenuation, and Class 1 ASTM Fills

ENGINEERING RESEARCH AND DEVELOPMENT SPONSORED By Halifax C&D Recycling Ltd

Raw Material – Scrap Tires

The TDA is manufactured by shredding scrap tires to specified sizes pieces and "quality"

Direct Shear Strength Test

Using samples <u>our</u> Tire Shred, we developed relationships between shear loads and strength

Triaxial Strength Test

This sophisticated test (replicated 10s of times) provided invaluable data on the Modulus of Elasticity of our TDA – an important property related to elasitity

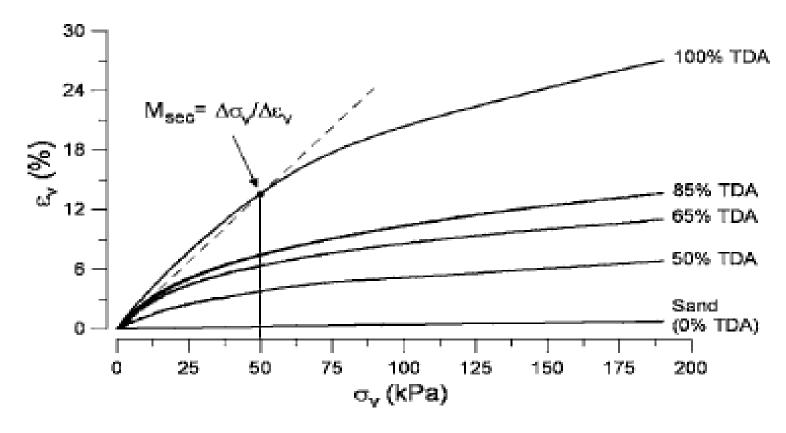


Fig. 8. Vertical strain (ε_v) versus stress (σ_v) for TDA specimens (tire chips) tested in the oedometer

ENGINEERING RESEARCH AND DEVELOPMENT SPONSORED By Halifax C&D Recycling Ltd

Dalhousie University Field Research

Purpose of the work was to show how TDA works as a stress reduction fill that has advantages over buried structures.

Instrumentation

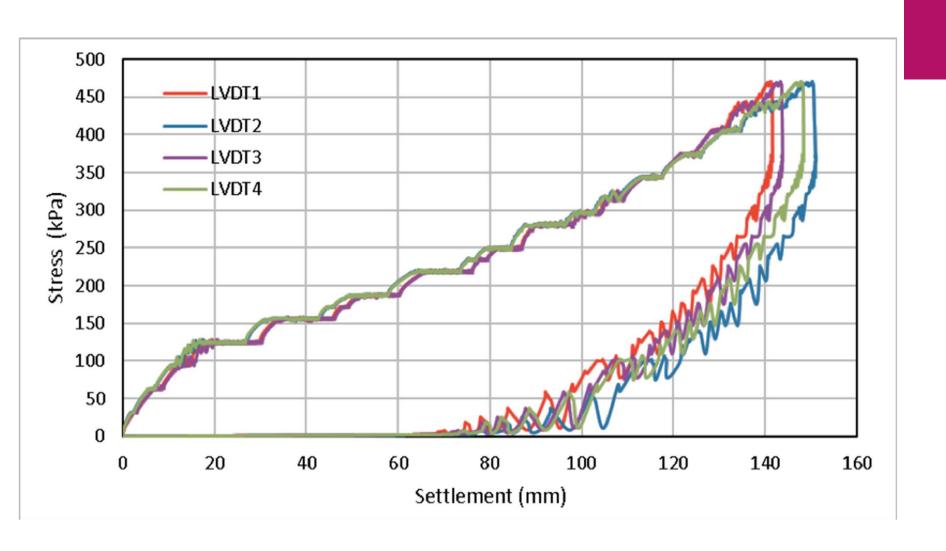
We used pressure cells, strain gauges, and vertical displacement gauges to measure what happens under the TDA when we "load" it.

Material Placement

The TDA was compacted as in actual applications. Five test plots were constructed.

ENGINEERING RESEARCH AND DEVELOPMENT SPONSORED By Halifax C&D Recycling Ltd

Gravel Fill


Concrete Footings

Reaction Frame

Loading and Data Acquisition

Questions:

