Thermal Treatment of Municipal Solid Waste in Canada

Thermal Treatment Summit: Technology for Resource Recovery Dartmouth, NS May 14, 2019

Source: https://www.ecomena.org

Objectives

- Characterize the waste that is disposed in Canada
 and the Atlantic Provinces
- Suggest when thermal treatment may be appropriate
- Provide information on Government of Canada requirements and support

Municipal Solid Waste (MSW) in Canada (2016)

- 34.2 M tonnes generated
- 9.2 M tonnes diverted (27%)
- 24.9 M tonnes disposed (73%)
 - 41% residential and 59% non-residential
 - More than 95% is landfilled
 - Less than 5% is thermally treated (mostly with energy recovery, although this also includes open burning)

Source: Statistics Canada (https://www150.statcan.gc.ca/n1/daily-quotidien/181005/dq181005d-eng.htm)

Municipal Solid Waste (MSW) in Canada (2016)

Jurisdiction	Waste Generated (tonnes)	Disposed (tonnes)	Diverted (tonnes)	Percent Diverted
Canada	34,191,448	24,940,747	9,250,701	27%
Newfoundland and Labrador	434,729	395,324	39,405	9%
Prince Edward Island	Not Available	Х	53,261	Not Available
Nova Scotia	668,436	375,258	293,178	44%
New Brunswick	654,433	503,123	151,310	23%
Quebec	7,760,615	5,356,134	2,404,481	31%
Ontario	12,785,183	9,475,472	3,309,711	26%
Manitoba	1,180,268	969,289	210,979	18%
Saskatchewan	1,068,079	898,404	169,675	16%
Alberta	5,037,999	4,206,668	831,331	17%
British Columbia	4,368,845	2,614,087	1,754,758	40%
Yukon, Northwest Territories and Nunavut	Not Available	х	32,612	Not Available

Source: Statistics Canada (<u>https://www150.statcan.gc.ca/n1/daily-quotidien/181005/dq181005d-eng.htm</u> and <u>https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3810003301</u>)</u>

Composition of MSW Disposed in Canada (Draft, 2018)

- Biodegradable materials make up more than 60% of the waste currently landfilled
- Plastics and other high energy value wastes make up at least more than 15%

Nova Scotia Waste Characterization

NS Total Residual Municipal Solid Waste – Draft 2018

Source: Report under development by Environment and Climate Change Canada

New Brunswick Waste Characterization

NB Total Residual Municipal Solid Waste – Draft 2018

Newfoundland & Labrador Waste Characterization

NL Total Residual Municipal Solid Waste – Draft 2018

Source: Report under development by Environment and Climate Change Canada

Prince Edward Island Waste Characterization

PE Total Residual Municipal Solid Waste – Draft 2018

Large Thermal Treatment Facilities in Canada

Name	Type of Facility	Waste Type	Capacity (tonnes/ year)	Energy Recovery		Location	Comments
L'incinérateur de la Ville de Québec	Incinerator with Energy Recovery	Post-recycled MSW; wastewater sludge	312000	Steam		Québec, QC	Heat used to dry wastewater sludge prior to incineration
Covanta Burnaby Renewable Energy	Incinerator with Energy Recovery	Post-recycled MSW	285,000	Electricity	28 MW	Burnaby, BC	25% of Metro Vancounver's waste
Durham York Energy Centre	Incinerator with Energy Recovery	Post-recycled MSW	140,000	Electricity	17.5 MW	Durham Region, ON	
PEI Energy Systems EFW	Incinerator with Energy Recovery	Post-recycled MSW	30,000	Steam, Electricity, Hot Water		Charlottetown, PEI	District heating and hot water system
L'incinérateur municipal de Lévis	Incinerator	Post-recycled MSW; hospital waste	26,800		None	Lévis, QC	
Emerald Energy From Waste	Gasification with Energy Recovery	MSW	187,000	Steam, Electricity	9.3 MW	Mississauga, ON	Excess steam sold to neighboring paper mill

Cement Industry

- Industry is a major energy consumer and seeks alternative fuels to reduce costs
- Unrecyclable plastics Numerous facilities either using or seeking approval, including: Lafarge (Delta, BC; Brookfield, NS; Bath, ON; Exshaw, AB); St. Mary's Cement (2 facilities in ON); and Holcim Cement (Joliette, QC)

• Tire Derived Fuel (TDF)

- TDF offsets the use of coal, petroleum coke and other fuels, reducing greenhouse gas and NOx emissions
- More than half of Canada's cement plants have a permit to use TDF as a part of their fuel mix; less than 5% of overall fuel mix
- Some provinces prohibit; others, such as Quebec, encourage the cement industry to use TDF in order to divert the scrap tires from landfills

When one might consider thermal treatment?

Can be an environmentally sound option and may be most preferred when:

- Waste reduction measures have been implemented and are yielding results (e.g. prevention, reuse)
- High recycling and diversion rates have been achieved, including hazardous wastes (e.g. lamps containing mercury)
- Energy and/or chemical recovery are viable
- Recovery of additional metals or other materials is viable
- Appropriate air pollutant emissions controls are included
- Skilled operators are available, properly trained & supervised
- Protocols for operation, maintenance and monitoring are clearly defined and adhered to

Potential **Benefits** of Thermal Treatment

- Significantly reduces the volume of waste requiring final disposal
- Energy and/or chemical recovery may be viable, particularly for larger scale facilities
- Can have lower GHG emissions than landfills, when the waste disposed includes biodegradable materials
- Lower GHG and NOx emissions for cement plants when combusting used tires and unrecyclable plastics, as compared to fuels like coal and petroleum coke

Potential **Benefits** of Thermal Treatment

- Air pollutant emissions from modern systems are/can be lower than regulatory requirements
- Additional recovery of metals is possible, even when processing post-recycled waste (e.g. Covanta Burnaby incinerator recovers about 7000 tonnes of metal per year)

Potential **Drawbacks** of Thermal Treatment

- Significant financial investment
- Energy and/or chemical recovery may be limited at small scale
- Can become undesirable competition for recycling and diversion
- Requires highly skilled operators, extensive maintenance and monitoring
- Waste streams with high energy and low moisture are (generally) preferred

Potential **Drawbacks** of Thermal Treatment

- For incinerators, in cases where the waste stream has low energy content, a supplementary fuel may be required to ensure complete combustion
- When not properly designed and operated, can be a significant source of air pollutant emissions such as particulate matter, dioxins, furans, and mercury
- A second disposal system (typically a landfill) may be required for ash or other residues (some of which may hazardous waste)

Federal Requirements and Guidance

- National Pollutant Release Inventory
 - Must report if incinerating: ≥ 26 tonnes non-hazardous solid waste; ≥ 26 tonnes biomedical or hospital waste; hazardous waste; sewage sludge
 - Excludes industrial processes where fuel derived from waste is fired as an energy source (e.g. bark and other clean wood waste used to fire a boiler)
- ECCC's Technical Document on Batch Waste Incineration (2010)
 - Guidance on selecting, operating and maintaining small batch MSW incinerators, with the aim of minimizing dioxin, furan and mercury emissions
- ECCC's Solid Waste Management in Northern and Remote Communities: Planning and Technical Guidance Document (2017)

Green Municipal Fund (FCM)

- Provides grants for municipalities and their partners to do studies for initiatives that could help divert at least 60% of MSW from landfills
 - If 60% target already achieved, project must demonstrate potential to surpass
 - For remote communities, diversion projects must target a diversion rate of 15% over their current baseline
- Thermal treatment projects are only eligible for funding if the municipality has already achieved a total diversion rate of at least 60% with reduction, reuse, recycling or biological processes
 - This limitation does not apply to remote communities

Federal Support for Infrastructure & Innovation

- Clean Growth Hub (<u>http://www.ic.gc.ca/eic/site/099.nsf/eng/home</u>)
 - Whole-of-government focal point for clean technology focused on supporting companies and projects, coordinating programs and tracking results
 - Get advice from a team of experts from across government who can help you
 find and understand what programs and services may be right for you
 - Services are available to firms of all sizes in the clean technology space and across all sectors of the economy
- ECCC's Low Carbon Economy Fund
 - Enwave Energy Corporation will receive up to \$3.5M to upgrade and expand an existing waste-to-energy system for district heating in Charlottetown, PEI https://www.canada.ca/en/environment-climate-change/news/2019/03/government-of-canada-supports-climate-actionby-enwave-energy-corporation.html

Federal Support for Infrastructure & Innovation

Natural Resources Canada funded projects

- Enerkem Inc. received \$729K toward its "Biomass-rich Waste Conversion into Drop-in Fuels" project (completed 2016)
- Enerkem Inc. also received \$2.9M toward its "Modular Compact Combined Heat and Power (CHP) Using Heterogeneous Biomass Wastes" project (completed 2018), which focused on serving remote communities
- Both projects determined that the production of biofuels would be more cost effective when done on a larger scale, at central conversion hubs
- <u>https://www.nrcan.gc.ca/energy/funding/21146</u>

Thank You!

Matt Hamilton, P.Eng. Manager, Waste and GHG Reduction Waste Reduction and Management Division Environment and Climate Change Canada (819) 938-4511 Matthew.Hamilton@canada.ca